
CHART2 NTCIP Driver High Level
Design

High Level Design Study for the Design, Development and
Integration of the NTCIP Driver into the CHART2 System

Edwards and Kelcey Technical Design Document for CHART2.

A study of the High Level Design for the NTCIP Driver to integrate into the CHART2 software
system. The CHART2 software provides a series of interfaces for a DMS type Driver to interact with.
The NTCIP is a set of standards developed by several interested bodies for Intelligent Trafficking
Systems. This document determines the code architecture for an NTCIP DMS Driver to be added to
the CHART2 software.

Author Cameron Riley

Email criley@ekmail.com

Company Edwards and Kelcey Technology, Inc

URL

Address 750 Miller Drive, Suite F-1

City Leesburg, Virginia

Zip 20175

phone 703.779.7988

fax 703.779.7989

date 7th December 2001

CHART2 NTCIP Driver - High Level Design : page.1

Copyright Edwards and Kelcey Technology Inc, 2001

Abstract

NTCIP is a grouping of standards for the meaningful communication between devies for ITS. The
CHART2 system is the Maryland State Highway Administration's highway incident management
program. This project is for the development and integration of an NTCIP driver for NTCIP compliant
DMS's into the CHART2 software.

The CHART2 software provides strong interfaces for the integration of an NTCIP DMS into the
CHART2 system. The central interface is the ProtocolHdlr interface which determines the
communication and interaction between the CHART2 DMS object and the Message Sign.

NTCIP defines the communication at the Data Link layer as PMPP or the Point to Multi Point
Protocol. The operations for encoding and decoding the PMPP frames are seperated into a seperate
package. The NTCIPProtocolHdlr when requested to communicate with the sign, uses the PMPP
package to create a PMPP frame and and when a response is received to decode the frame.

The PMPP protocol defines the information field as consisting of IPI and an SNMP PDU or
alternatively an STMP PDU. The STMP protocol is not finalized and the SNMP is a more common
internet protocol. Three SNMP libraries were evaluated by Edwards and Kelcey Technology, with
joeSNMP being decided as the most suitable for CHART2's requirements.

The NTCIP standard defines the Mib groups for NTCIP compliance. These contain the Signs status
in it's controller. The NTCIP driver uses MibXML to store the status of the CHART2 DMS locally in the
CHART2 system. The MibXML is DMS instance specific. When requests from the CHART2 system
are made against the NTCIPProtocolHdlr interface, the status of the NTCIPDMS will be maintained by
the manipulation of the MibXML in the instance of the CHART2 NTCIPDMS.

The CHART2 DataPort interface is the session manager for opening direct communication with a
Sign. The interface is a master only and doesnt support unsolicited asynchronous Trap requests.

CHART2 NTCIP Driver - High Level Design : page.2

Copyright Edwards and Kelcey Technology Inc, 2001

CHART

CHART is the highway incident management program of the Maryland State Highway
Administration. CHART is comprised of four major components, traffic monitoring, incident response,
traveler information and traffic management. The traveler information component of CHART provides
real-time information concerning travel conditions on main roads in the primary coverage area. The
information is conveyed to travelers via either Variable Message Signs, Highway Advisory Radio,
Commercial radio and television broadcasts and a telephone advisory service. The variable message
signs are programmable message boards, both permanent and portable which are capable of
displaying real-time traffic conditions to motorists. NTCIP compliant Dynamic Message Signs are a
type of VMS. CHART2 is the current implementation of the CHART system being developed by the
Maryland State Highways Administration.

CHART2 CORBA Object Transport Mechanism

The CHART2 System uses CORBA, to transport and communicate between objects across the
distributed client and server system. The GUI's from which the DMS Devices are managed, exist as
Clients in the CORBA system. The FMSServer carries the implementations of the Objects. The Driver
interacts across this system by the IDL interfaces.

The ORB is a message bus between objects that may reside on any machine in the network. The
IDL is the interfaces by which the distributed objects publish their capabilities. CORBA is the
specification that describes the ORB's functionality. CORBA specifies location transparency and
language transparency. For CHART2's distributed system, the former is the most important.

NTCIP Standard

The National Transportation Communications for Intelligent Transportation System Protocol
(NTCIP) is a family of standards maintained by NEMA, AASHTO and ITE. The NTCIP standards
provide the rules and vocabulary for electronic traffic equipment from different manufacturers to
communicate and operate with each other. NTCIP compliant devices must follow this standard. For a
Device to be NTCIP compliant it must implement a mandatory set of MIB's, accept data transport by
PMPP and be capable of reading Multi Message Format for sign display.

CHART2 NTCIP Driver - High Level Design : page.3

Copyright Edwards and Kelcey Technology Inc, 2001

Major Components of the NTCIP Driver

Diagram showing the showing major components in the NTCIP Driver. The GUI is the DMS GUI for an NTCIP specific sign, the
DMS is the CHART2 DMS object, the MibXML is the NTCIP Device's status as represented by it's interaction with the Mib
package. The Protocol Handler is the protocol handler interface which is provided by the CHART2 system. The Protocol Handler
carries a set of actions for CHART2 DMS's that the DMS can access. To communicate with the sign, the PMPP package is used
to encode and decode the packets. The CHART2 DataPort interface is the session manager, which encapsulates the physical
connection to the sign.

CHART2 NTCIP Driver - High Level Design : page.4

Copyright Edwards and Kelcey Technology Inc, 2001

Overview of Components

The major components of the NTCIP Driver for the CHART2 system are the CHART2 DMS object,
the MibXML state storage mechanism, the Protocol Handler, the Pmpp component and the DataPort.

The DMS is the object which represents a Sign in the CHART2 software system. The DMS knows
how to describe itself and maintains it's internal state and status. The DMS can use the Protocol
Handler to communicate with the physical sign and query, or update it's status including the message.
This is commonly done through the GUI interface.

The MibXML component is the Mib points and groups placed into a DMS instance specific XML
structure in memory. The MibXML maintains the DMS's internal state including being updated with the
responses to the DMS's requests to the physical Sign.

The NTCIP Protocol Handler is the interface provided by CHART2 for the actions that a CHART2
DMS can request. The Protocol Handler is the intermediary between the means of communication and
the CHART2 DMS, it provides the DataPort, which is able to connect to a physical DMS.

The PMPP component is the means for transportation of data meaningfully between the CHART2
software system and the physical Sign's onboard controller, including the Management Information
Base. The PMPP protocol follows the NTCIP set of standards for communication with trafficing
devices.

The DataPort is the CHART2 interface for connecting across a physical line to a physical sign.

NTCIP Driver

The software solution to the addition of the NTCIP Driver to the CHART2 system allows for the
software to be divided into small packages which focus on particular tasks. The central component of
the driver is the Protocol Handler. This is represented for Message Signs through the
DMSProtocolHdlr Interface. An NTCIP specific Protocol Handler will implement this interface. The
Protocol Handler has the following methods.

public void setConfiguration(DMSProtocolHdlrConfig config)
throws DMSProtocolHandlerException;

public DMSProtocolHdlrConfig getConfiguration();

public void setMessage(DataPort port,
String multiMsg,
boolean beaconState)

throws DMSProtocolHandlerException;

public void blank(DataPort port)
throws DMSProtocolHandlerException;

public DMSDeviceStatus getStatus(DataPort port)
throws DMSProtocolHandlerException;

public void reset(DataPort port)
throws DMSProtocolHandlerException;

The setConfiguration() method sets the configuration parameters which are mostly used for

CHART2 NTCIP Driver - High Level Design : page.5

Copyright Edwards and Kelcey Technology Inc, 2001

determining formatting for messages to signs. The get Configuration() method is an assessor method
for returning the configuration object. The setMessage() method is for displaying a message on a Sign.
The blank() method blanks the sign removing any currently displayed message. The getStatus()
method returns the current status of the sign. The reset() method resets the Sign's controller.

The CHART2 system makes requests on these methods and the Protocol Handler creates suitable
PMPP requests which update the DMS's current state, which is then reflected back into the CHART2
system.

CHART2 NTCIP Driver - High Level Design : page.6

Copyright Edwards and Kelcey Technology Inc, 2001

Sequence Diagram describing the interaction between the GUI, Protocol Handler and the Sign.

CHART2 NTCIP Driver - High Level Design : page.7

Copyright Edwards and Kelcey Technology Inc, 2001

PMPP Communication

The NTCIP set of standards defines the Point to Multi Point Protocol for communication with
trafficing devices. PMPP is a specialization of the HDLC protocol which can use SNMP or STMP for
the INFO field. The STMP standard is still being defined and the SNMP is already a widely accepted
protocol on the internet for remote devices. The NTCIP driver will support SNMP through PMPP.

The PMPP standard places restrictions on the fields that make a up a frame or packet sequence.
The frames must be bordered by the bit 01111110 or the hex 0x7E, the frame must support CRC 16
bit checksumming, bit stuffing and transparency, as well as BER encoded SNMP requests and
responses.

PMPP frame structure. The PMPP frame is similar to an HDLC frame, with the major change being the addition of the IPI field in
the HDLC information field.

The Protocol Handler interface and the CHART2 system expose the DataPort as the
communication session interface. The DataPort IDL interface supports the following methods;

public void send(byte[] data)
throws DataPortIOException;

public byte[] receive(long initialTimeoutMillis,
long interCharTimeoutMillis,
long maxReadDurationMillis)

raises (DataPortIOException);

Where the send() method sends the binary over the port and the receive() method receives bursts
of bytes from the port as the data chunks become available. The time the port remains listening can
be specified through the initialTimeoutMillis which is the length of time to wait until the first byte of data
is received, the interCharTimeoutMillis which is the amount of time to wait between two consecutive
bytes. Once this times out it is assumed that the complete packet has been received. The final
argument is the maxReadDurationMillis which is the maximum amount of time that should be spent
receiving bytes after the initial byte is received.

The PMPP standard defines Traps for SNMP. The DataPort is a master that opens a port and
sends binary data and then waits to receive a reply. Traps are asynchronous, unsolicited calls from the
Sign. The trapping mechanism requires that the system be capable of fielding unsolicited PMPP calls
from the Sign to the CHART2 system. The DataPort structure doesn't support this type of
communication.

As SNMP is a widely used and adopted communication standard there are several SNMP libraries
available for use, both commercial and opensource. Edwards and Kelcey Technology evaluated three
closely, the Adventnet SNMP API, Outback Inc SNMP and joeSNMP.

All three follow the design of opening an SNMP Session and then communicating with SNMP
Requests and Responses. This is the role in CHART2 which is satisfied by the DataPort. As the
DataPort uses byte arrays to send and receive, the SNMP toolkit which will work with the greatest
ease would require that the PDU be easily converted to and from a byte array. In this area joeSNMP

CHART2 NTCIP Driver - High Level Design : page.8

Copyright Edwards and Kelcey Technology Inc, 2001

had the richest API.

The licensing fee's for Adventnets SNMP API were $11,500 per developer seat plus runtime costs
which is prohibitive. The Outback Inc's SNMP toolkit was $995 for developer seat and deployment.
Both however are commercial closed source products and offer no source code to the developer.
joeSNMP is opensource and licensed under the LGPL library. There are no developer or runtime costs
involved, however as it is opensource, there is no immediate support that comes with it's usage. In this
area Edward and Kelcey Technology can be contracted to support the library for code maintenance,
bug removal and addition of features.

The PMPP package will be separate to the Protocol Handler and placed in the
CHART2.Utility.Communications package. The package will have an object which follows the Facade
pattern and provides a simple enclosing interface to the PMPP package. It is through this facade
object that the CHART2 system should access the packages capabilities. The facade object,
PmppBuilder, carries four methods;

public byte[] encodeGet(byte[] address, OID oid)

public byte[] encodeSet(byte[] address, OID oid, String value)

public String decodeGet(byte[] buffer)
throws InvalidFrameException

public void decodeSet(byte[] buffer)
throws InvalidFrameException

Where the encodeGet() method creates a binary PMPP frame to get the value of the OID, the
encodeSet() method creates a binary PMPP frame to set the value of the OID in the sign, the
decodeGet() method unmarshalls the value from the received binary chunk and the decodeSet()
method checks the frame from the received binary chunk. The address binary comes from the
CHART2DMS's getId() method. Through these four methods the requirements for interaction with the
NTCIP compliant DMS as defined in the Protocol Handler interface can be achieved.

The working object in the Communications package is the PmppRequest object. This object is
tasked with storing the frames state, determining it's validity to the standard, as well as marshalling
and unmarshalling the frame to an HDLC encoded frame and decoding the frame to it's constituent
parts. The PmppRequest follows the PmppSyntax interface which contains the methods;

public int encodePmpp(byte[] buf,
int offset,
HdlcEncoder encoder);

public int decodePmpp(byte[] buf,
int offset,
HdlcEncoder encoder)

throws InvalidFrameException;

Where the encodePmpp() method accepts a binary array, and encodes the bytes contained within
to an HDLC encoding from the offset onwards. The returned int is the last encoded byte in the buffer.
The decodePmpp() method decodes the HDLC encoding in the buffer from the offset onwards. The
returned int is the offset of the last decoded byte. The decodePmpp method throws an
InvalidFrameException if the buffer fails to be decoded due to frame errors. The HdlcEncoder object is
analogous to the AsnEnoder and BerEncoder objects found in the joeSNMP library.

The HdlcEncoder object is aware of the requirements for transparency that the HDLC standard

CHART2 NTCIP Driver - High Level Design : page.9

Copyright Edwards and Kelcey Technology Inc, 2001

places on PMPP frames. Transparency requires that the 0x7E's and 0x7D's in the frame be escaped
with 0x7D 0x5E and 0x7D 0x5D respectively. The frame flags which are 0x7E are not included in the
transparency.

The PMPP standard requires that a CRC-16 checksum be calculated and embedded into the FCS
field. The FCS check during encoding is done after the SNMP Request, Address and Control fields
have been added to the PMPP. For unmarshalling this is done after the PMPP packet is de-framed.
The FCS check is called from the PmppRequests encodePmpp() and decodePmpp() methods. The
working object for the CRC check is the CRC16 object. This object follows the java.util.zip.Checksum
interface. The standard Sun java libraries include a CRC32 object, but no published CRC16 object.
There is in the sun.misc package a CRC16 object, but it is undocumented and only appears with Sun
JVM's. It also does not follow the Checksum interface. The Checksum interface has the methods;

public long getValue();

public void reset();

public update(int b);

public void update(byte[] b, int offset, int length);

Where the checksum is calculated through the addition of byes by the update methods and
getValue() is the value of the checksum's value which can be obtained at any time. The concrete class
for CRC16 adds the two publicly available methods;

public int getHighByte()

public int getLowByte()

Which facilitates the checksum value being added quickly to the PmppRequest as the 16 bit field
the PMPP standard requires.

The SnmpPdu object is the CHART2 facade class to the joeSNMP library. The SnmpPdu object
accepts through it's constructors the standard GET, SET and RESPONSE requests. The constructors
are;

public SnmpPdu(OID oid, String value)
throws UnsupportedEncodingException

public SnmpPdu(OID oid)
throws UnsupportedEncodingException

public SnmpPdu(byte[] data)
throws UnsupportedEncodingException

Where the first constructor which accepts an OID and value as argument is the constructor for an
SNMP SET request the constructor which accepts an OID is an SNMP GET request and the
constructor which accepts a binary array as an argument is the SNMP RESPONSE constructor. The
SnmpPdu also contains encodeAsn() and decodeAsn() methods which are for marshalling and
unmarshalling SNMP requests to and from BER Encoding.

CHART2 NTCIP Driver - High Level Design : page.10

Copyright Edwards and Kelcey Technology Inc, 2001

Sequence Diagram for a GET request describing the interaction between the NTCIP Protocol Handler, the PmppBuiler and the
DataPort.

CHART2 NTCIP Driver - High Level Design : page.11

Copyright Edwards and Kelcey Technology Inc, 2001

Sequence Diagram for a SET request describing the interaction between the NTCIP Protocol Handler, the PmppBuiler and the
DataPort.

CHART2 NTCIP Driver - High Level Design : page.12

Copyright Edwards and Kelcey Technology Inc, 2001

UML Diagram for the PmppSytnax interface, the PmppRequest working object and the PmppBuilder facade.

CHART2 NTCIP Driver - High Level Design : page.13

Copyright Edwards and Kelcey Technology Inc, 2001

CHART2 NTCIP Driver - High Level Design : page.14

Copyright Edwards and Kelcey Technology Inc, 2001

UML Diagram for the PmppRequest working object, the HdlcEncoder and the SnmpPdu facade.

CHART2 NTCIP Driver - High Level Design : page.15

Copyright Edwards and Kelcey Technology Inc, 2001

MibXML : DMS State Storage

When the Protocol Handler acts upon requests from the Manager operating the CHART2 GUI, the
Protocol Handler makes requests with the PMPP Protocol to the Sign and receives responses which
reflect the DMS's current state. The Sign's state is stored in the actual device as MIB's or
Management Information Base. A highly nodular standard which contains information on the OID,
variable name, variable value and other descriptive fields describing the Mib point. The Mib's follow
the ASN.1 standard which is commonly stored in an aged flat file format.

The NTCIP set of standards supports the Mib series, TS-3.2, TS-3.3, TS-3.5, TS-3.6 and TS-3.7, of
which some groups are mandatory and others are optional. Not all the Mib's are required to support
the Protocol Handler interface. The mandatory Mib groups include;

Mandatory Mib's under the NTCIP Specification;

• Configuration Conformance Group
• Security Node Conformance Group
• Sign Configuration and Capability Conformance Group
• Font Definition Conformance Group
• DMS Configuration Conformance Group
• Multiconfiguration Conformance Group
• Message Table Conformance Group
• Sign Control Conformance Group
• Illumination/Brightness Conformance Group
• Scheduling Conformance Group
• Sign Status Conformance Group

To achieve the status of the DMS being stored in the CHART2 system while maintaining separation
of the Model(Mib), View(DMSGUI) and Controller(DMS) would be best stored in the DMS Object as an
instance specific in memory Mib database using XML as the structure. This allows for the knowledge
of the Mib's to be segregated from the Java code describing the DMS and the Protocol Handler. Other
benefits include the ASN.1 nodular structure being stored in a well supported data structure with many
libraries to store, search and manipulate the nodes, coarser information of the Mib point such as OID,
name and description. The original Mib structure can be loaded once and cloned for instance specific
DMS states.

The Mib objects are contained in the CHART2.Utility.Mib package, which exists in the CHART2
system to create, copy, store, request, insert and manipulate Mib's providing an accessible and simple
interface to manage a CHART2 DMS's current state.

The Facade object for the Mib package is the MibService object. The MibService exposes three
publicly available static methods;

public static List getGroupNames(MibManager mibmg)

public static OID getOID(MibManager mibmg,

CHART2 NTCIP Driver - High Level Design : page.16

Copyright Edwards and Kelcey Technology Inc, 2001

String type)
throws OIDNotFoundException, OIDNotValidException,

JaxenException, SAXPathException

public static void setOIDValue(MibManager mibmg,
OID oid,
String value)

The method getGroupNames() gets a listing of the Groups the object with the MibManager
interface contains. The method, getOID() returns an OID object from the object adhering to the
MibManager interface and with the mib-name or mib-type by ASN.1 parlance. The method
setOIDValue() set's the value of the OID. The MibManager interface contains methods to interact with
a Mib database. The interface follows;

public static List getGroupNames()

public static OID getOID(String type)
throws OIDNotFoundException, OIDNotValidException,

JaxenException, SAXPathException

public static void setOIDValue(OID oid,
String value)

Which is similar to the methods exposed by the facade, however the interface is for objects which
carry knowledge of the structure they are querying and manipulating.

The Mibdb object is the working object which contains the XML structure of the ASN.1 standard for
Mib's as XML. It follows the MibManager interface and is the DMS instance specific object which
contains the DMS's state. The Mibdb does nothing more than carry it's XML database and query
against it. The MibServive serves mainly as a facade to the more complicated Mibdb working object.

The OID object represents a Mib point and contains the publicly accessible methods;

public String getName()

public String getOID()

public String getType()

public String getSystem()

public String getSyntax()

public String getSize()

public String getAccess()

public String getStatus()

public String getDescription()

public String getValue()

Which follows the nodes that the ASN.1 standard contains for a Mib point.

The Mibdb is instance specific to the DMS which is instantiated in the CHART2 system by an
operator at a management station. The Mibdb is loaded as an empty XML structure from a server by
the MibPool object. The MibPool follows the Singleton pattern and exists a single static instance on
the server. The MibPool loads the XML which represents the Mib points and groups for an NTCIP
compliant DMS from persistent storage when the CHART2 system is started. Persistent storage can
be either from the file system or from the database. As it is only loaded once, the overhead for loading

CHART2 NTCIP Driver - High Level Design : page.17

Copyright Edwards and Kelcey Technology Inc, 2001

the initial XML into the system is only felt the first time. When an NTCIP CHART2 DMS is instantiated
in the CHART2 system, the DMS requests an empty Mibdb. The Mibdb is cloned from the XML
template that the MibPool is carrying. The MibPool has the public methods;

public static MibPool getInstance()

public synchronized Mibdb getPool()

Where the getInstance() method is the initial manner in which to instantiate the MibPool on the
JVM as the MibPool constructor is private. The synchronized method getPool() is the method to
request the initial Mibdb for NTCIP compliant Signs.

The Mib groups are fairly unchanging, and as such can be represented in an XML Document Type
definition which describes the structure the MibXML has to follow. This is the template for the manner
in which the data in the Mibdb must be structured.

<!ELEMENT root ANY>
<!ELEMENT name (#PCDATA) EMPTY>
<!ELEMENT definitions (#PCDATA) EMPTY>

<!ELEMENT group (description?,mib*,entry*) EMPTY>
<!ATTLIST group
name CDATA #REQUIRED
oid CDATA #REQUIRED
system CDATA #REQUIRED

>

<!ELEMENT mib (description?) EMPTY>
<!ATTLIST mib
oid CDATA #REQUIRED
system CDATA #REQUIRED
type CDATA #REQUIRED
syntax CDATA #REQUIRED
size CDATA #IMPLIED
access CDATA #REQUIRED
status CDATA #REQUIRED

>

<!ELEMENT description (#PCDATA) EMPTY>

<!ELEMENT entry (description?,mib*) EMPTY>
<!ATTLIST entry
oid CDATA #REQUIRED
system CDATA #REQUIRED
type CDATA #REQUIRED
syntax CDATA #REQUIRED
size CDATA #IMPLIED
access CDATA #REQUIRED
status CDATA #REQUIRED
index CDATA #REQUIRED

>

The DTD only guarantees that the structure be maintained in the flatfile representation of the XML
and hence when loaded. The same DTD can be mapped into a Java object named MibDTD for the
Mibdb to take advantage of;

/** DTD node value */
public static final String NODE_NAME = "name";

/** DTD node value */
public static final String NODE_DESCRIPTION = "description";

CHART2 NTCIP Driver - High Level Design : page.18

Copyright Edwards and Kelcey Technology Inc, 2001

/** DTD attribute value */
public static final String ATTRIBUTE_OID = "oid";

/** DTD attribute value */
public static final String ATTRIBUTE_TYPE = "type";

/** DTD attribute value */
public static final String ATTRIBUTE_SYSTEM = "system";

/** DTD attribute value */
public static final String ATTRIBUTE_SYNTAX = "syntax";

/** DTD attribute value */
public static final String ATTRIBUTE_SIZE = "size";

/** DTD attribute value */
public static final String ATTRIBUTE_ACCESS = "access";

/** DTD attribute value */
public static final String ATTRIBUTE_STATUS = "status";

CHART2 NTCIP Driver - High Level Design : page.19

Copyright Edwards and Kelcey Technology Inc, 2001

UML Diagram for the MibPool, MibTable and the MibPoolFactory.

CHART2 NTCIP Driver - High Level Design : page.20

Copyright Edwards and Kelcey Technology Inc, 2001

Sequence Diagram for NTCIP GUI using the Protocol Handler to update the status of the DMS Device.

CHART2 NTCIP Driver - High Level Design : page.21

Copyright Edwards and Kelcey Technology Inc, 2001

UML Diagram for the MibManager interface, the Mibdb working object and the Singleton MibPool.

CHART2 NTCIP Driver - High Level Design : page.22

Copyright Edwards and Kelcey Technology Inc, 2001

NTCIP DMS Integration into CHART2

The CHART2 system provides a series of strong interfaces which carry the properties of a DMS.
The NTCIP DMS only needs to implement and extend these objects to provide the required CHART2
behavior of the DMS.

A standard specific DMS in the CHART2 system must adhere to the DMS and CHART2DMS
interfaces provided by the CHART2 system. These are discussed in detail in the High Level Design
documentation for CHART2. The CHART2DMS interface requires the DMS to carry the
CHART2DMSStatus object which contains information on the current status of the DMS. The
CHART2DMSStatus contains the publicly accessible class member variables;

m_currentMessage
m_performingPixelTest
m_commMode
m_opStatus
m_shortErrorStatus
m_statusChangeTime
m_controllingOpCenter

Where m_currentMessage is a DMSMessage object, m_performingPixelTest is a boolean value,
m_commMode is a CommunicationMode object, m_opStatus is an OperationalManagement object,
m_shortErrorStatus is an int, m_statusChangeTime is an int and m_controllingOpCenter is an
OpCenterInfo object. These objects predominantly describe the Sign's external status as opposed to
the signs Mib state. The DMSMessage is described through Mib's, however the CHART2
DMSMessage object contains more information about the Message, such as it's Multi-Message format
and ASCII representation. The NTCIPDMSStatus object will extend this class and contains the
information specific to the NTCIP DMS's status. In this case, this object would update the Mibdb which
is part of the NTCIPDMS description. The interfaces to manipulate the Mibdb through the
NTCIPDMSStatus object are declared to the ORB through the IDL methods in NTCIPDMSDefs which
compile to the CHART2.DMSControl.NTCIPDMSDefs package.

The DMSConfiguration object contains more detail on the DMS's properties such as;

m_name
m_deviceLocation
m_dmsSignType
m_signMetrics
m_pages
m_dmsTimeCommLoss
m_dmsBeaconType
m_defaultJustificationLine
m_defaultPageOnTime
m_defaultPageOffTime

The CHART2 system also contains in the CHART2.DMSProtocols package a DMSDeviceStatus
object which contains information on the beacon state, the Multi Message and the short Error Status of
the DMS. This is the object returned by the Protocol Handler's getStatus() method.

The GUI component for the NTCIP DMS is contained in the CHART2.GUIDMSModule.NTCIP
package with the GUINTCIP object extending the GUIDMS object.

CHART2 NTCIP Driver - High Level Design : page.23

Copyright Edwards and Kelcey Technology Inc, 2001

Resources

• CHART2 : http://www.chart.state.md.us/
• Edwards and Kelcey Technology : http://www.ekcorp.com/
• NEMA : http://www.nema.org/
• NTCIP : http://www.ntcip.org/
• Object Management Group : http://www.omg.org/

References

• Edwards and Kelcey Report Subtask 1 : NTCIP Compliance Survey and Driver
Development. 2001.

• Edwards and Kelcey Report Task 23 : NTCIP implementation of PMPP in CHART2.
2001.

• Edwards and Kelcey Report Task 23 : NTCIP Mib's XML Storage Mechanism. 2001.
• MSHA Report : Performance Evaluation of CHART, An Incident Management

Program. 1997.
• MSHA Report : CHARTII Release I, Build 2 High Level Design.
• MSHA Report : CHARTII Release I Build 2 - GUI Detail Design.
• MSHA Report : CHARTII Release I, Build 2 - Field Management Station detailed

Design.
• MSHA Report : CHARTII Release I, Build 2 - Field Management Station High Level

Design.
• MSHA Report : CHARTII Release I, Build 2A - High Level Design.
• MSHA Report : CHARTII Release I, Build 2A - Detailed Design.

Glossary

• CORBA : Common Object Request Broker Architecture.
• DMS : Dynamic Message Sign.
• DTD : Document Type Definition.
• FMS : Field Management Station.
• GUI : Graphical User Interface.
• HDLC : High-level Data Link Control.
• IDL : Interface Definition Language.
• ISDN : Integrated Services Digital Network.

CHART2 NTCIP Driver - High Level Design : page.24

Copyright Edwards and Kelcey Technology Inc, 2001

http://www.chart.state.md.us/
http://www.ekcorp.com/
http://www.nema.org/
http://www.ntcip.org/
http://www.omg.org/

• MIB : Management Information Base.
• NEMA : National Electrical Manufacturers Association.
• NTCIP : National Transportation Communications for ITS Protocol.
• OID : Object Id.
• ORB : Object Request Broker.
• PDU : Protocol Data Unit.
• PMPP : Point to Multi Point Protocol.
• POA : Portable Object Adapter.
• SNMP : Simple Network Management Protocol.
• VMS : Variable Message Sign.
• WAN : Wide Area Network.
• XML : Extensible Mark-up Language.

CHART2 NTCIP Driver - High Level Design : page.25

Copyright Edwards and Kelcey Technology Inc, 2001

